DRAFT - Engineering Tripos, part IIB: Notice concerning Engineering Areas 2016-17

Students choose eight modules from a list of eighty or so. Each module may have up to 16 lectures, or equivalent work, and is scheduled to be either wholly within the Michaelmas Term or wholly within the Lent Term (with the exception of a small number of vacation modules). There are no supervisions for fourth-year modules. Fourth-year modules may be assessed wholly by coursework, wholly by examination, or by a combination of the two (25% coursework, 75% exam). All module examinations are held in the first three weeks of the Easter Term.

The Engineering Areas are defined by the Faculty Board of Engineering in the following documents. To qualify in a particular Engineering Area, you must take a minimum number of modules falling within that area. The Engineering Area for your modules and project do not have to be the same.

You may find your module choice enables you to qualify in more than one area. You may do this; you do not have to choose between them. Alternatively, you may choose modules which do not allow you to qualify in any single area, in which case you will register for Engineering.

For advice on Engineering Areas and module choices, your Director of Studies should be your first port of call.

N.B. For 2016-17 only: If you took 3F6 in 2015-16 you may not take 4M21 in 2016-17.

Part IIB Engineering Area requirements: Mechanical Engineering

Number	Title
4A2	Computational Fluid Dynamics
4A3	Turbomachinery I
4A7	Aerodynamics
4A9	Molecular Thermodynamics
4A10	Flow Instability
4A12	Turbulence and Vortex Dynamics
4A13	Combustion and IC Engines
4B19	Renewable Electrical Power
4C2	Designing with Composites
4C3	Electrical and Nano Materials
4C4	Design Methods
4C5	Design Case Studies
4C6	Advanced Linear Vibrations
4C7	Random and Non-linear Vibrations
4C8	Vehicle Dynamics
4C9	Continuum Mechanics
4C15	MEMS: Design
4C16	Advanced Machine Design
4D6	Dynamics in Civil Engineering
4D17	Plate and Shell Structures
4F1	Control System Design
4F7	Digital Filters and Spectrum Estimation
4G4	Biomimetics
4I10	Nuclear Reactor Engineering
4111	Advanced Fission and Fusion Systems
4M12	Partial Differential Equations and Variational Methods
4M16	Nuclear Power Engineering
4M17	Practical Optimization
4M20	Robotics

Students intending to qualify in this Engineering Area in Part IIB must include at least **four** of the modules listed.

Advice

Mechanical Engineering covers a very broad field: the main areas are mechanics, fluid dynamics, thermodynamics, materials, and design, but topics in control and instrumentation are also relevant. Many students will choose to specialise either in the "dry" side of the subject (mechanics, materials, design) or the "wet" side (fluids and thermodynamics), but combinations of courses can be found to suit many different career paths, some of which cut across this divide. It would be prudent for students to discuss this with the Engineering Area Coordinator before choosing a very eclectic mix of courses, in case a lack of overlap makes the workload unusually high.

Specialist advice can be obtained from the Mechanical Engineering Coordinator whose details can be found on the <u>IIA Mechanical Engineering Area</u> webpage.

Part IIB Engineering Area requirements: Energy, Sustainability and the Environment

Students intending to qualify in this Engineering Area in Part IIB must include at least four of the modules listed.

Title
Computational Fluid Dynamics
Turbomachinery
Molecular Thermodynamics
Combustion and IC Engines
Renewable Electric Power
Architectural Engineering
Electricity and Environment
Nuclear Reactor Engineering
Advanced Fission and Fusion Systems
Sustainable Development
Sustainable Energy
Nuclear Power Engineering
Present and Future Energy Systems

Advice

Power generation and environmental engineering are central to the advancement of a sustainable future in developed and emerging economies. Energy engineering and sustainability are broad interdisciplinary subjects. This Engineering Area offers the opportunity to draw together modules across electrical, mechanical and civil engineering, with application areas ranging from power generation in gas and steam turbine plants, to fuel cells and renewable energy technologies, to buildings and infrastructure.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the IIA Energy, Sustainability and the Environment Engineering Area webpage.

Part IIB Engineering Area requirements: Aerospace and Aerothermal Engineering

Students intending to qualify in this Engineering Area in Part IIB must include one of the following combinations in their selection of modules:

- either four Part IIB core modules,
- or three Part IIB core modules + two Part IIB companion modules.

Core modules

Number	Title
4A2	Computational Fluid Dynamics

Published on CUED undergraduate teaching (https://teaching15-16.eng.cam.ac.uk)

4A3	Turbomachinery I
4A4	Aircraft Stability and Control
4A7	Aerodynamics
4A9	Molecular Thermodynamics
4A10	Flow Instability
4A12	Turbulence and Vortex Dynamics
4A13	Combustion and IC Engines
4A15	Aeroacoustics

Companion modules

Number	Title
4C2	Designing with Composites
4C4	Design Methods
4C4 4C5	Design Case Studies
4C6	Advanced Linear Vibrations
4C7	Random and Non-linear Vibrations
4C9	Continuum Mechanics
4C15	MEMS: Design
4F1	Control System Design
4F2	Robust and Non-linear Control
4F3	Optimal and Predictive Control

Advice

Aerospace and Aerothermal Engineering is an interdisciplinary blend of subjects ranging from fluid mechanics, thermodynamics, structures, instrumentation, control, electronics and design to manufacturing. In essence Aerospace Engineering is concerned with flight and Aerothermal Engineering with the associated propulsion systems. In the past, development in these fields has been driven by technological issues. In the future, environmental concerns, minimising noise and pollution, and relentless pressure on design and manufacturing turnaround time will force novel solutions and paradigm shifts.

The essential interdisciplinary nature of the subject is reflected in the diversity of the recommended companion modules drawn from across the spectrum of the Department's teaching. This diversity increases in Part IIB.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the <u>IIA Aerospace and Aerothermal Engineering Area</u> website.

Part IIB Engineering Area requirements: Civil, Structural and Environmental Engineering

Students intending to qualify in this Engineering Area in Part IIB must include at least four of the modules listed.

Number	Title
4D4	Construction Engineering
4D5	Foundation Engineering
4D6	Dynamics in Civil Engineering
4D7	Concrete Structures
4D8	Pre-stressed Concrete (not running 2016-17)
4D10	Structural Steelwork
4D13	Architectural Engineering
4D16	Construction Management (reintroduced 2016-17)
4D17	Plate and Shell Structures
4M9	Surveying Field Course
4M14	Sustainable Development
4M15	Sustainable Energy
4M18	Present and Future Energy Systems
4M19	Advanced Building Physics

Advice

Intending Civil, Structural or Environmental Engineers are advised to study the broadest possible range of relevant courses.

NB. Module 4D16 'Construction Management' can be counted as one of your two management modules for the purposes of accreditation by the Institution of Structural Engineers.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the IIA <u>Civils Engineering Area</u> website.

Part IIB Engineering Area requirements: Electrical and Electronic Engineering

Students intending to qualify in this Engineering Area in Part IIB must include at least four of the modules listed.

Number	Title
4B2	Power Micro Electronics
4B5	Nanotechnology
4B6	Solid State Devices and Chemical/Biological Sensors
4B7	VLSI Design, Technology and CAD
4B11	Photonic Systems
4B19	Renewable Electrical Power
4B20	Display Technology
4B21	Analogue Integrated Circuits
4C3	Electrical and Nano Materials
4C15	MEMS: Design
4F5	Advanced Communications and Coding
4M20	Robotics

Advice

Electrical and Electronic Engineering covers the range of topics which best represent the current trends in circuits, devices and systems for hardware implementations.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the <u>IIA Electrical and Electronic Engineering Area</u> website.

Part IIB Engineering Area requirements: Information and Computer Engineering

Students intending to qualify in this Engineering Area in Part IIB must include at least **four** of the modules listed.

Flexible Electronics
Control System Design
Robust and Non-linear Systems and Control
Optimal and Predictive Control
Advanced Communications and Coding
Digital Filters and Spectrum Estimation
Image Processing and Image Coding
Statistical Pattern Processing
Computer Vision
Probabilistic Machine Learning
Practical Optimization
Robotics
Software Engineering and Design

Advice

Information and Computer Engineering covers the digital representation and processing of signals and systems. It extends from the theory of signals and systems, through to the manipulation of data via computer programs. In addition to all of the information modules, this professional area includes modules from the Computer Science Tripos.

Candidates with a strong interest in control should also consider 'Instrumentation and Control' as an alternative.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the <u>IIA Information and Computer Engineering Area</u> website

Part IIB Engineering Area requirements: Electrical and Information Sciences

Students intending to qualify in this Engineering Area in Part IIB must include at least six of the modules listed.

Number	Title
4B2	Power micro electronics
4B5	Nanotechnology
4B6	Solid state devices and chemical/biological sensors
4B7	VLSI design, technology and CAD
4B11	Photonic systems
4B19	Renewable electrical power
4B20	Display technology
4B21	Analogue integrated circuits
4B22	Flexible Electronics
4C3	Electrical and nano materials
4C15	MEMS: design
4F1	Control system design
4F2	Robust and non-linear control
4F3	Optimal and predictive control
4F5	Advanced Communications and Coding
4F7	Digital filters and spectrum estimation
4F8	Image processing and image coding
4F10	Statistical pattern processing
4F12	Computer vision
4F13	Probabilistic Machine learning
4M12	Partial differential equations and variational methods
4M17	Practical optimization
4M20	Robotics
4M21	Software Engineering and Design

Advice

Electrical and Information Sciences covers a very broad area. The B modules cover a wide range of electronic circuits and devices, while the F modules cover the digital representation and processing of signals, and the manipulation of data in computers.

A student in this area will be seeking to gain a broad overview of systems from the signals that flow through them to the hardware platforms that implement them. Although many students will choose to do mostly B modules or mostly F modules depending on their inclination towards the electrical or information side, students who prefer to specialise exclusively in one or the other should consider one of the other B/F engineering areas.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the <u>IIA Electrical and Information Sciences Engineering Area</u> webpage

Part IIB Engineering Area requirements: Instrumentation and Control

Students intending to qualify in this Engineering Area in Part IIB must include at least four of the modules listed.

Number	Title
4B11	Photonic systems
4B22	Flexible Electronics
4C6	Advanced linear vibrations
4C7	Random and non-linear vibrations
4C15	MEMS: design
4F1	Control system design
4F2	Robust and non-linear control
4F3	Optimal and predictive control
4F5	Advanced Communications and Coding
4F7	Digital filters and spectrum estimation
4F8	mage processing and image coding
4F10	Statistical pattern processing
4F12	Computer vision
4F13	Probabilistic Machine learning
4M20	Robotics
4M21	Software Engineering and Design

Advice

Instrumentation and Control covers a range of topics which are important to the monitoring and control of modern systems. The B modules cover basic circuits and device technology and the F modules cover the representation, capture and manipulation of signals. The C modules cover the relevant engineering aspects of mechanical systems.

Students intending to qualify in this Engineering Area in Part IIB must include at least four of the modules listed.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the <u>IIA Instrumentation and Control Engineering Area</u> website

Part IIB Engineering Area requirements: Bioengineering

Students intending to qualify in this Engineering Area must include at least **four** of the modules listed **of which at least two must be G modules**.

Number	Title
4G1	Mathematical Biology of the Cell
4G2	Biosensors
4G3	Computational Neuroscience
4G4	Biomimetics
	Design Methods
4C5	Design Case Studies
4C9	Continuum Mechanics
4F8	Image Processing and Image Coding
4F12	Computer Vision
4F13	Probabilistic Machine Learning
418	Medical Physics

Advice

Bioengineering is a rapidly growing field encompassing the use of engineering tools to solve problems in medicine and biology as well as new quantitative approaches to biological systems based on engineering principles.

Specialist advice on this Engineering Area can be obtained from the Coordinator whose details can be found on the IIA <u>Bioengineering Engineering Area</u> webpage.

Part IIB Engineering Area requirements: Engineering

Students intending to qualify in this Engineering Area in Part IIB may choose any set of modules subject to the restrictions given in COMET.

Source URL (modified on 10-06-16): https://teaching15-16.eng.cam.ac.uk/content/draft-engineering-tripos-partiib-notice-concerning-engineering-areas-2016-17