
PART IB EXPERIMENTAL ENGINEERING

SUBJECT: INFORMATION ENGINEERING EXPERIMENT I3
(SHORT)

LOCATION: EIETL, INGLIS BUILDING

POSITION CONTROL

Objectives

1. To give experience of interpreting block diagrams.

2. To relate control system behavior to natural frequency and damping of 2nd-order
differential equations.

3. To introduce cascade control.

4. To give experience of making frequency response measurements (including phase
shifts) at very low frequencies (if time allows).

5. To give experience of designing a control system to meet specifications.

Introduction

In this experiment you will control the position of a steel ball on a beam by means of
negative feedback. The acceleration of the ball will be determined by the angle of the
beam from the horizontal. The experiment consists of three parts: (1) Design of a feedback
system to control the beam angle; (2) Design of a feedback system to control the ball
position, making use of the control system designed in (1)(so-called cascade control); (3)
Measurement of the frequency response (harmonic response) of the ball position control
system.

The behaviours you will observe, and the calculations you will perform, are typical of
those encountered in the control of many electromechanical systems such as active vehicle
suspensions, compact disc players, robots, aircraft, and many others.

Near the back of the lab sheet you will find the figures, and a page on which you should
record the results you obtain.
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Equipment

1 unit comprising:

Ball and beam with motor and ball position sensor.
Beam position and velocity sensors mounted on motor shaft.
‘Patch panel’ with 4 variable-gain amplifiers (P1, P2, Q1, Q2), motor drive amplifier, sig-
nal limiter(not used), ‘demand signal’ generator, position and velocity signal output sock-
ets( BP,−BV, PP,−PV ).
Note: Output sockets are red, input sockets are green.
Low frequency signal generator.
Voltmeter(±10 volts).
Data Logger Interface connected to a PC for two-channel data logging; this allows both
‘Y versus time’ and ‘Y versus X’ plots to be made, as well as having a ’DVM’ (Digital
Volt Meter) facility.
Flying leads(for patching the ‘patch panel’ etc).

Note that the position and velocity signals for the beam are prefixed with ‘P’(= ‘Plank’),
and those for the ball are prefixed with ‘B’. Whenever we refer to these signals we shall
assume that they have already been transduced into electrical signals, measured in volts.
Some of these signals have minus signs attached to them, to indicate that they have been
inverted by the electronics before being brought to the patch panel.

Also note that socket labeled ‘−BV ’ provides a ‘Ball Velocity’ signal, even though there
is no direct measurement of this. This signal is derived from the Ball Position signal; for
the purposes of this experiment treat it as if it were a direct measurement.

Design of Beam Control System

Remove the ball from the beam

The angle of the beam will be controlled by a feedback system of the form shown in
fig.1 PD is the Plank Position Demand (electrical) signal, which represents the angle we
would like the beam to have. PP is fed back compared with PD, any error is amplified
by the gain of K2, and fed into the input of the drive amplifier(labeled DRIV E). The
sign of the feedback is chosen such that the motor is driven to reduce the error. There is
little inherent damping in the motor/beam system, so feedback of PP alone would lead
to a very underdamped control system. We therefore also feed back PV (which has been
amplified internally by the gain R before reaching the patch panel), amplify it by the gain
K1, and add it to the position error signal before applying it to DRIV E. (This is known
as ‘velocity feedback’ for obvious reasons).
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Using the lower two potentiometers on the ‘patch panel’, implement
the beam angle control system shown in fig.1. Use potentiometer
Q1 to implement K1 and Q2 to implement K2. (Don’t worry about
the potentiometer settings yet.)

The motion of the beam is described approximately by

J
d2θ

dt2
+B

dθ

dt
= a×DRIV E (1)

where θ is the beam angle(in radians), J is the beam’s moment of inertia, B is a viscous
damping term, and a is the effective torque constant of the motor and drive amplifier.
Since PP is measured with sensitivity of 0.67 volts/deg, we can rewrite (1) as

d2(PP )

dt2
+ β

d(PP )

dt
= α×DRIV E (2)

where

α = 0.67× 180

π
× a

J
and β =

B

J
(3)

When the feedback loops shown in fig.1 have been closed, it is straightforward to show
that

d2(PP )

dt2
+ (β + αRK1)

d(PP )

dt
+ αK2(PP ) = αK2(PD) (4)

The auxiliary equation (or characteristic equation) of (4) is

s2 + (β + αRK1)s+ αK2 = 0 (5)

(in Control engineering we usually use s rather than λ, etc, because it is also used as the
complex variable appearing in the Laplace Transform).

If K1 and K2 are chosen so that 5 has two coincident real roots located at σ, ie

s2 + (β + αRK1)s+ αK2 ≡ (s− σ)2 (6)

then the response of PP to a unit step on PD will be critically damped, with time
constant 1/σ:

PP (t) = 1− (1− σt)eσt (7)

(Note that σ must be negative if the system is to be stable.)
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Assuming α = 30, β = 0, and R = 0.15, what values of K1 and K2 are
required to obtain critical damping with σ = −20?

Set up the potentiometers Q1 and Q2 to give these values of K1 and
K2. (Remember to take account of the ×20 amplifier!)

Note that if the potentiometer ‘window’ is showing ‘2’, say, then its gain is between 0.2
and 0.3, depending on the dial setting. That is, the potentiometers have a gain of 1.00
when fully open.

Record the response of the beam angle control system to step changes
of PD of about 1 volt. If necessary, adjust Q1 to obtain approxi-
mately critical damping.

Note: Instructions for using the Data Logger Interface are attached at the back of this
lab sheet.

If necessary, adjust Q2 and Q1 until the beam step response is sub-
stantially finished in about 0.5 second or less, with damping approx-
imately critical.

Ball Position Control

The Ball Position will be controlled by a feedback system as shown in fig.2. BD is an
electrical signal which represents that Ball Position Demand. The ball position measure-
ment BP is fed back and compared with BD, any error is amplified by the gain K4, and
used to change the beam angle (PP ) to correct the ball position. Of course, in order to
change PP the error signal must be used as the input to the beam control system which
you have already built. Thus PD is no longer obtained from a signal generator, but from
the Ball Position signal. As before, velocity feedback is used to control the damping of
the ball control system: BV is fed back, amplified by the gain K3, and combined with
the ball position error signal, as shown in fig.2.

Implement the feedback system shown in fig.2, using the poten-
tiometers P1 and P2 to implement the gains K3 and K4, respec-
tively. (Leave your beam control system as it is, since you will need it as part
of the ball control system.)

Set K3 = 0.1 and K4 = 0.8. (You are advised to set the the appropriate
amplifier gain to ‘×2’. Remember to take this amplifier into account.)
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The ball control system should now be stable, but very underdamped. You are going to
design it so that it can meet a fairly tough specification. In order to do this, we have to
look at a little theory.

If x is the position of the ball on the beam then, for small beam angles,

ẍ =
g

1.8
θ (8)

(where g is the acceleration due to gravity, and the derivation of the term g/1.8 is quite
complicated). Since the ball position is measured with a sensitivity of 20 volts/metre, we
have

d2BP

dt2
= γ × PP (9)

where γ = (g/1.8)× (20/0.67)× (π/180) = 2.84.

Now if you have implemented the beam angle control system correctly, then the response
of PP to changes in PD is going to be much faster than the response of the ball to changes
in BD. We shall therefore make the simplifying assumption that

PP = PD (10)

namely that the beam angle responds instantly to demands, (whereas the real relationship
between PD and PP is given by equation (4)). With this assumption, it is easy to show
that, when the feedback loops shown in fig.2 have been closed,

d2(BP )

dt2
+ γK3

d(BP )

dt
+ γK4(BP ) = γK4(BD) (11)

From the left hand-side of this, we get the auxiliary equation

s2 + γK3s+ γK4 = 0 (12)

Comparing 12 with the standard form for a second-order system:

s2 + 2 ∗ ζωns+ ω2
n = 0 (13)

where ωn is the natural frequency and ζ is the damping factor, we see that

K3 =
2ζωn
γ

and K4 =
ω2
n

γ
(14)

Fig.3 shows how the step response of a second-order system varies with the damping factor
ζ. Note that the horizontal axis is ‘normalized time’ ωnt, so that changing the undamped
natural frequency ωn changes the speed with which the response occurs, but leaves its
shape unchanged.

5



Keeping K4 unchanged, record the step response of the ball with
two different values of K3, and verify that the damping is increased
as K3 is increased.

Now increase K4 by a factor of 2, and K3 by a
√

2. According to
14 this should leave the damping factor unchanged, but increase
the undamped natural frequency by a factor of

√
2. Record a step

response and verify this.

Now design the ball control system to meet the following specification: The ball is required
to follow a square-wave demand signal, of frequency 0.1Hz, and the error between BP
and BD should be less than 20% of the demand amplitude for at least 70% of the cycle.
It is suggested that you perform the design as follows:

Choose a damping factor ζ between 0.5 and 1.0 (choose one of these shown on fig.3). For
this ζ, determine from fig.3 the value of ωn required to meet the specification, assuming
that the response during each half-cycle is the same as it would be for an isolated step
(which is not quite true). Determine the values of K3 and K4 required to obtain these
values of ζ and ωn.

Implement these values of K3 and K4.

Using the signal generator, apply a square wave ball demand signal
of amplitude 4 volts and frequency 0.1 Hz, and record the response
of the ball

Check whether your design meets the specification

Frequency response measurements (if you have time)

Equation (11) can be re-written as a transfer function between BD to BP :

BP (s)

BD(s)
=

γK4

s2 + γK3s+ γK4

(15)

and from this we can obtain the frequency response at frequency ω by replacing s by jω.
This means that if BD(t) = X(ω) sin(ωt) then BP (t)→ Y (ω) sin(ωt + φ(ω)) as t→∞,
where the gain or amplification is

Y (ω)

X(ω)
=

∣∣∣∣ γK4

(jω)2 + γK3jω + γK4)

∣∣∣∣ (16)
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and the phase shift is

φ(ω) = arg

(
γK4

(jω)2 + γK3jω + γK4)

)
(17)

In particular if we take ω = ωn =
√

(γK4) then

Y (ωn)

X(ωn)
=

K4

K3ωn
=

1

2ζ
and φ(ωn) = −π

2
(rad) (18)

Note that for ω � ωn we have Y (ω)/X(ω) ≈ 1 and φ(ω) ≈ 0, whereas for ω � ωn we
have Y (ω)/X(ω) ≈ γK4/ω

2 and φ(ω) ≈ −π. In the latter case we therefore have

log
Y (ω)

X(ω)
≈ −2 logω + log (γK4) (19)

so that the graph of log [Y (ω)/X(ω)] against logω (ie a Bode plot) is almost a straight
line at high frequencies.

A convenient way of measuring the frequency response is to apply BD to channel A of
the Data Logger Interface, and apply BP to channel B. Once initial transients have died
away, and elliptical display should be obtained. From this the gain(Y/X) and phase (φ)
characteristics can be obtained, as shown in fig.4

Apply a sinusoidal ball position demand (BD) signal of 2 volts (peak
to peak), at the predicted undamped natural frequency ωn of your
ball control system (remember to convert rad/sec to Hz). Check
whether the phase shift at the frequency is −π/2 rad.

Adjust the frequency of BD until the phase shift is −π/2, and hence
determine the actual resonant frequency of your system. By also
measuring the gain at this frequency, estimate the actual damping
ζ (using equation (18)).

If time permits, measure the gain and phase shift at frequencies
ωn/5, ωn/2, 2ωn, and 5ωn (using the experimentally determined value
of ωn), and plot results on the graph paper provided.

Michaelmas 2015/Lent 2016

R. Sepulchre
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Answer Sheet

Design of Beam Control System

1. Values of K1 and K2 for σ = −20 K1 = K2 =
Potentiometer settings: Q1 = Q2 =

2. Potentiometer setting needed for critical damping: Q1 =
3. Final potentiometer settings for beam control system: Q1 = Q2 =

Ball Position Control

4. Damping factor and natural frequency selected: ζ = ωn =
5. Corresponding values of K3 and K4: K3 = K4 =
6. Proportional of cycle for which error < 20%:
7. Final potentiometer settings: P1 P2

Frequency response measurements

8. Phase shift at designed ωn : φ
9. Frequency at which φ = −π/2rad : ωn
10. Actual damping at this frequency: ζ
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