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_________________________________________________________________________ 

 

PART IB EXPERIMENTAL ENGINEERING 

 

SUBJECT: ELECTRICAL ENGINEERING        EXPERIMENT E4 (LONG) 

LOCATION: ELECTRICAL & INFORMATION ENGINEERING LABORATORY 

  

 

WAVE TRANSMISSION & REFLECTION 

_________________________________________________________________________ 

 

These experiments involve properties of waves common to sound waves in air, seismic 

waves in solids, radio and optical waves in free space or in solid refracting material, and 

(with some reservations) gravity waves on the surface of liquids.  The experiment is 

performed with microwaves, meaning electro-magnetic waves with wavelengths of a few 

centimetres, which are convenient for measurement.  Microwaves are used for line-of-sight 

communications including satellite communications, mobile telephones, satellite navigation, 

radar, industrial processing, and cooking.  

 

Objectives 

 

To introduce some general properties of travelling waves, and the effect of combining 

waves travelling in opposite directions – which produces standing waves.  

 

To measure the wavelength and velocity of microwaves in air by observing standing waves 

in a coaxial line. 

 

To introduce, and emphasise, the importance of quantitative assessment of accuracy and 

consistency, for all your results in whatever experiment.  The recommended approach is 

described in the pamphlet: Estimation of Experimental Errors, attached at the end of this 

sheet, and you should read it carefully before performing the experiment.  

 

To measure the velocity of microwaves in some solid material (e.g. teflon, perspex and 

glass) from the change in travel time when the material is substituted for air, and to 

characterise the material by its refractive index, n. 

 

To build a microwave resonator, by making a section line with highly reflective ends.  To 

plot and interpret the response versus frequency for resonators of two different lengths. 
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1. Introduction 

 

At optical wavelengths it is a matter of common experience that very well-defined beams of 

radiation can be produced in free-space propagation.  For microwaves such narrow beams 

are not normally possible and so, in this experiment the waves are guided by two conductors 

with the electromagnetic fields confined within a coaxial line, or more loosely restrained by 

two flat conductors: a ‘stripline’.  The latter configuration makes it easier for us to introduce 

different materials into the wave-field space to observe their effect. 

 

Some common characteristics of all waves are briefly reviewed below. 

 

1.1 Waves have frequency, f, wavelength, λ, and velocity, u (more strictly we should say 

‘phase velocity’) which are related by: 
 

u = f λ       (1) 
 

For sound waves in air u = 330 m/s whereas in steel u = 5000 m/s.  Gravity waves on the 

surface of water generally travel at a few m/s but are dispersive, which means the velocity 

varies with frequency. 

 

For EM waves in a vacuum the velocity is a universal constant denoted by c = 2.99  10
8 

ms
-1

. It is hardly any different in air, but slower in solids and liquids and characterised by 

the refractive index of the material, n, where 

    u (material) = 
n

c
     (2) 

 

1.2 Waves also have amplitude, A.  Suppose a refers to the wave variable: for sound it 

might be the air pressure or the air particle displacement.  For EM waves it might be the 

electric or the magnetic field strength.  Then at a fixed position the time-variation can be 

written 
 

   a = A sin 2ft      (3) 
 

where A is the amplitude.  The phase changes by 2, so that the wave repeats itself, in a 

period t = 1/f. 
 

Considering the variation with position z, at a fixed instant of time, we can write 
 

    a = A sin 2(z/)     (4) 
 

so that the wave repeats itself at intervals of  on the z-axis. 
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1.3 Combining (3) and (4), for a forward-travelling wave we have 

a = A sin 


2
 (ut – z)     (5) 

 

The term ‘phase velocity’ can now be understood: for an observer who moved with velocity 

u in the positive z-direction, (i.e.  z = z0 + ut) then the phase term (ut – z) would be 

unchanged. 

 

Waves may travel in either direction so for a wave in the negative z-direction we can put 

 

    b = B sin 


2
 (ut + z)     (6) 

 

assuming a and b are in phase at  z = 0. 

 

1.4 Most changes of the material of propagation or the local geometry of the structure 

which supports the wave, will cause a reflection of the wave, in general a partial reflection 

(eg the change from tube to open air reflects the wave at the end of an organ pipe, forming a 

resonator).  The amplitude reflection coefficient is defined by 
 

    = 
A

B
       (7) 

 

Since the power carried by a wave is proportional to amplitude squared, the power 

reflection coefficient is 
 

   2

2

2

ρ
A

B

P

P

a

b        (8) 

 

This would usually be in optical systems where ‘intensity’ = power per unit area. 

 

1.5 Reflections can be reduced, where desirable, by using absorbing or matching 

elements: ‘absorbing’ as in acoustic tiles, and ‘matching’ as in the anti-reflection coating on 

a lens surface.  The design of these elements involves the concept of wave impedance.  For 

light waves, and for sound waves, the impedance of solids and liquids is invariably lower 

than the impedance of air.  In section 3.2 you will measure typical reflection coefficients. 

 

1.6 The interference between a forward and reflected wave is due to the superposition of 

the a and b fields leading to ‘standing waves’ (fixed in space) with maxima where a and b 

add, and minima where they subtract because they are in anti-phase.  If the amplitudes A 

and B are nearly equal the minima are nearly zero and are known as ‘nodes’. 
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Fig. 1 

 

Consider the superposition of the direct wave a and the reflected wave b in Fig. 1.  At any 

z-position, a is given by equation (5) and looking at the distance travelled by the reflected 

wave in Fig. 1, we have 

 

    b = B sin   zut  2
2




      (9) 

 

Superposing the two waves in equation (4) and (9), a and b are in phase when 

 

         mλzutzut  2 , m = + integer 

i.e. 

     2/max mz                   (10) 

 

For each value of m we have a maximum standing wave amplitude = (A + B). 

 

For minima, a and b are in anti-phase, where the amplitude = (A – B), and clearly the 

spacing of successive maxima or minima is /2.  In this experiment we shall make 

measurements on the position of minima since they can be observed using an oscilloscope 

or datalogger using its most sensitive scale, and consequently their position can be more 

sharply defined than the maxima. 

 

Standing waves as treated in this experiment are an example of a one-dimensional 

interference pattern when two or more coherent waves are superposed.  What other 

examples of interference patterns have you encountered? 

 

 

 
 

Fig. 2.  Section of stripline with sketch of E-field lines 
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2. Experimental Apparatus 
 

2.1 The microwave source for this experiment is based on a product from Analog 

Devices, Inc., and generates a few mW of continuous wave (CW) microwave power, 

available from a miniature coaxial SMA panel connector.  The generator is entirely 

microprocessor controlled, and accepts commands to control the frequency, amplitude and 

other settings by means of a USB interface and a Windows PC.    

With the Windows application New Wave running, the following features are available: 

 At top left the Microwave Source panel shows the RF output frequency in MHz, 

from 2000 to 4000.  You may click on the calibrations at 2000, 2400, 3000, 3600 or 

4000 to set the frequency to that value.  Alternatively, click the arrows at either end 

of the scale to increase or decrease frequency.  The mouse scroll wheel may also be 

used. 

 At the right side of the Microwave Source panel you can set the Output Level (O/P 

level) to one of four different values, or OFF. 

 At the left side of the Microwave Source panel you can click the large rectangular 

Scan button to command a scan in which the frequency will be swept repeatedly 

from 2000 to 4000 MHz in 10 MHz increments.  This is handy for quick 

observations. 

 

2.3 Slotted line.  A fine probe can be moved along the slot using the cranked wheel at 

the RH end, to allow observation of the relative strength of the E-field between the centre 

and outer conductor of the rigid coaxial line. The RH connector should have a shorting 

plug.  There is a diode detector in the moveable carriage; it rectifies the alternating E-field 

and gives a voltage output at the left hand GR connector on the carriage. Please do not 

attempt to dismantle the carriage assembly.  Various loads may be connected to the end of 

the slotted line: open circuit, short circuit, and ‘matched’ load, or it may be followed by the 

next item - 

 

2.4 Stripline.  This ‘open plan’ line allows different materials to be introduced into the 

wave field space between the suspended live conductor and the ground plane, to explore 

how they affect its properties.  At its far end, another diode detector, type CD51, is 

provided.  This will be used to observe the forward wave transmitted through the obstacles 

to be introduced on the line.  With the stripline (unlike the coaxial line), weak fields spread 

out to some distance either side of the space between the conductors and your observations 

will be affected by any objects which may be too close: see Fig. 2. 

 

2.5 A data logger is also provided and is integrated into the same enclosure as the 

microwave source.  This allows signal levels to be measured numerically and under 

program control.  The Slotted line panel is always updated, and records the signal level 

from the detector attached to the Slotted line detector as a function of time.  The Stripline 

panel is updated when a sweep is in progress, and the colour trace plotted may be selected 

manually as Blue Trace, Red Trace or Green Trace by clicking the corresponding button at 

top right. Graphs may also be plotted as a function of frequency.  These features will be 

required in later parts of the experiment.  In addition, coaxial cables are provided, fitted 

with the different connectors required: type SMA for the microwave source, type BNC for 

the data logger, and type N for the stripline and for the slotted line and its various loads.   
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3. Experiments to be performed 

 

Fig. 3 shows the main components in a convenient arrangement on the bench. 

 

3.1 Measurement of wavelength and phase velocity on the slotted line. 

 Observations of standing waves. 
 

With the equipment powered up and the New Wave application running, set the frequency 

on the source.  You should use three different frequencies, approximately 2.4, 3.0, and 3.6 

GHz for this experiment.  Make sure the O/P level is set to maximum.  The output should 

be connected to the LH end of the slotted line so that the forward wave is in the direction of 

increasing z as measured on the mm scale.  Place a short circuit on the right-hand end of the 

slotted line (it is an N type connector plugged with a brass disc).  The detector output on the 

moveable carriage can now be observed on the PC screen in the Slotted line panel.  The 

scale is logarithmic, so variations can most easily be detected at low signal levels of a few 

mV.  The power of the source and the sensitivity of the detector both vary slightly with 

frequency setting.  Vary the frequency slightly, in each of the three cases, to one that gives a 

strong upward deflection on the PC screen.   
 

Observe positions of minima in the standing wave pattern.  Note that the minima are very 

deep, close to zero, because the wave reflected from the short circuit is equal in amplitude 

to the forward wave.  The logarithmic scale on the PC display will facilitate this, and you 

may see low-level fluctuations (noise) superimposed.  Record the position P1 of the 

minimum nearest to the low end of the scale and another Q1 near the high end of the scale
*
, 

counting the number of maxima in between.  Hence, from equation (10) and the paragraph 

which follows it, calculate the wavelength on the slotted line and then the velocity  u = f.  

Obtain values at different frequencies; they should be equal to  c  (2.998  10
8
 ms

-1
) to very 

good accuracy. 
 

Headings for your note book.   Table 1. 

 

 

Freq.               Position of Minima          Number of max.                                     u 

 

f/GHz              P1 / mm    Q1 / mm                P1 to Q1                        mm             mm/ns 

 
 

In all experimental work, calculate results as you go along, and if possible plot them on a 

graph, in order to verify that they make sense.  In this section set out the results in your 

notebook in a Table with the headings given above.  The accuracy of the u-values should be 

derived in your Table from a clearly stated estimate of the uncertainty in a single position 

measurement (what sets the limit to this?), followed by a comment on the consistency of the 

several u-values and their relation to c.  To estimate the accuracy, refer to the Appendix: 

Estimation of Experimental Errors, attached at the end of this sheet. 

                                                           
*
 Not too near this end.  Make sure there is sufficient free travel to reach the next maximum. 
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3.2 Amplitude reflection coefficients measured with the slotted line 
 

You have already seen that the reflection coefficient of the brass shorting plug is unity: in 

optical terms it is a perfect reflector.  In fact, the reflection coefficient  

 = –1 because the reflected wave must be in anti-phase with the incident wave at the brass 

surface where there can be no tangential electric field. 
 

What would you expect for an open circuit?  You might suppose that the wave would carry 

on into empty space.  However, being constrained by the currents in the conductors (which 

must be zero at an open circuit) it is almost totally reflected – just as the sound wave in an 

organ pipe is mainly reflected at the open end of the pipe. 
 

One frequency will do for this experiment.  Choose one from your Table 1 near 3 GHz and 

set the same frequency.  Remove the brass shorting plug, and connect instead the special 

‘open’ plug – which is of the same length as the shorting plug.  Measure the new positions 

of previous minima which will have now shifted to P2 and Q2, with P2 > P1 and Q2 > Q1 (this 

is the reason that Q1 was specified as not too near the high end of the scale).  Comment on 

the depth of the minima observed.  Use the following table headings in your notebook and 

the same method as previously for assessment of accuracy. 
 

Table 2 
 

 

   f               P2               (P2 – P1)          Q2           (Q2 – Q1)      Average Shift          / 
 

GHz           mm                  mm             mm              mm                 mm 

 
 

What shift / do you expect?  If your result is different, what does this imply?  Give a 

quantitative answer. 
 

You might expect there to be some characteristic impedance, in between a short circuit and 

an open circuit, with zero reflection coefficient i.e. total absorption of the incident wave.  

Indeed there is, but since it is difficult to assess that case with this apparatus you will now 

measure an intermediate reflection coefficient. 
 

Connect a flexible cable from the slotted line to the stripline and place one brass screw as a 

short circuit between the suspended conductor and the ground plane near the LH end.  

Screw down lightly; if you screw down hard you will distort the line.  Keep other objects 

well away from the stripline fields.  The reflection coefficient  is defined in terms of the 

relative magnitudes of the forward and reflected waves A and B – see Equation 7; however, 

these are difficult to measure directly.  Instead we define a quantity S, called the Standing 

Wave Ratio, which is related to , but can be determined from direct measurement of the 

fields on the slotted line.  S is defined as the ratio of the field magnitudes measured at the 

maximum and minimum positions on the slotted line.  These magnitudes depend on A and 

B – a moment’s consideration of section 1.6 shows that (A + B) corresponds to the 

maximum observed amplitude, and (A – B) to the minimum observed amplitude.  Hence: 
 

 
BA

BA
S




 ,  and by re-arranging,   

1

1
ρ






S

S

A

B
,  (11) 

using the notation presented on page 4.   
 

Unfortunately the detector output is offset from zero, and it is non-linear (it is in fact 

proportional to the square of the signal value).   To work around the first problem, record 

the lowest value observed, which represents the baseline of the plot.  Subtract this value 

from all subsequent measurements to get a proper zero-reference value before substituting 
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in the above equations.  To take into account the second problem, you should assume that 

the ratio between maximum and minimum that you observe represents S
2
.   

 

Measure S
2
 with the brass screw in position and hence deduce the reflection coefficient, .  

It clearly does not behave as a perfect short circuit. 

 

4. Velocity of microwaves in different materials 
 

In this section we shall investigate the effect of placing different dielectric materials in the 

space between the stripline and the ground plane.  This affects the velocity of propagation 

of the microwaves and hence the wavelength. 
 

Retaining one screw in the stripline, start Table 3 with the headings given below and record 

the position M of a minimum on the slotted line, somewhere near the LH end. 

 

Fig. 4 
 

Now introduce a sheet of material 3 mm thick under the suspended line, up against the 

reflecting screw as shown in Fig. 4.  Materials are provided with values of d from 30 mm to 

120 mm: begin with the shortest samples.   
 

The reduced velocity in the material increases the effective total length of the line to the 

reflector – the quantity l in equation (10).  Hence the position of each minimum on the 

slotted line moves nearer to the reflector by an amount (n-1) d.  Record the new position R, 

and interpret the shift in terms of refractive index, n.   
 

Remember the earlier advice to do calculations as you go along.  If d is large you may be at 

risk of making a mistake about which minimum is which.  To avoid this risk, consider 

gradually introducing the sample corner-first, tracking the chosen minimum with the 

detector.  Ask a demonstrator if you are in doubt. 
 

Table 3 
 

 

Material                 M/mm               d/mm               R/mm              R-M/mm               n 

 

 

Use four different d-values and three different materials: teflon, perspex and glass.  Assess 

the accuracy of the separate results as before and comment on the internal consistency.  

Refractive index values at microwave frequencies may be greater than you expect from 

their value at optical frequencies. 
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5. Transmission through a Resonator  
 

Any resonant system, such as a violin string, can have one particular mode frequency (and 

harmonics) defined by the distance between “stops” or amplitude minima.  The stripline has 

provision for 2 brass screws to be inserted with marked spacings.  These are highly 

reflecting (but not totally reflecting, as you should have noticed in section 3.2).  

Consequently wave energy oscillates to and fro between these two reflectors.  Resonance is 

reached when the spacing between them is an integer number of half wavelengths (not quite 

exactly, as it turns out).  There is transmission through the system at resonance when 

successive reflections add in phase. 
 

A spacing of 120 mm between the screws will produce a single resonance between 2 and 3 

GHz, and this is explored first. 

 

5.1 Setting up the apparatus 
 

(a) Remove from the stripline the screw and materials used in the previous part of the 

experiment.  Check that the lead from the detector on the end of the stripline is connected to 

the Datalogger interface.  (See Fig 3, p 6). 

(b) Select the required colour (blue, red or green) for the datalogger trace by clicking 

the appropriate button in the Datalogger panel.  Enter any comment or note you wish to 

accompany the printed plot in the Add a note .. text box below 

 

5.2 Measurement of a single resonance 
 

(a) Watch the stripline Click the Scan button in the Microwave Source panel to get a 

fast scan, and observe the effects.  It will take about 6-8 seconds for the whole 2 to 4 GHz 

sweep, which in Scan mode is sampled at intervals of 10MHz .  It should be noted that the 

screen plot baseline may move up and down to some extent as the generator output power 

varies with frequency.  By adjusting the power level on the Microwave Source panel, the 

display can be set to a suitable position.  Watch one or two sweeps, until you are happy with 

the settings.  This is a Reference plot, with which you should compare later results.   

(b) Record the Reference plot, but clicking the Log .. trace button in the Datalogger 

panel. A slower sweep will take place with a frequency increment of 2MHz per point, and 

the results will be plotted in the chosen colour.  Click the Log .. trace button a second time 

to stop the sweep.  You may observe a superimposed ripple effect on certain equipment 

where minor impedance mismatches remain (e.g. in the connectors).  If so, you may find it 

worth trying the FILTER button at top left of the plot area.  Click the button to apply the 

inbuilt filter to all plots on the screen.  Click it a second time to disable the filter.  
 

(c) Now insert two screws at a spacing of 120 mm through the stripline so that they 

lightly but firmly touch the metal base – do not over tighten them or the stripline will be 

distorted and bowed away from the base.  Then keep your hands away from the stripline. 

 

(d) Run a frequency sweep, as described in step (a).  Check you have chosen a suitable 

trace colour for the next plot.  Watch the display in the Stripline window and when you are 

ready, click the Log .. trace button in the Datalogger panel.  You can display and print up 

to 3 traces at one time on the screen. 

 

(e) Adjust the frequency of the Microwave Source using the mouse so that the 

frequency coincides with the peak resonant output.  Read off the frequency from the 

corresponding box in the Microwave Source panel, and record this carefully. 
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(f) Print out the graphics window by clicking on the PRINT button on the screen (top 

right of plot window).  Note that every printed plot is also saved locally.  You can use the 

OPEN button to return to earlier datasets accumulated during the session 

(g) Mark the peak frequency onto the plot and determine what wavelength 

corresponds to this frequency.  Is it 120 mm?  Can you suggest why might it be consistently 

more or less? 

 

5.3 Multiple resonances 
 

If you have time, this is a more interesting result for a resonator formed with two screws 

spaced at 320 mm on the stripline. 
 

Remove the screws from the stripline to obtain a reference plot again, as per paragraphs 

5.2(a) and (b).  Insert the screws 320 mm apart – only lightly screw them down, checking 

each one, and repeat the rest of section 5.2(d) onward. 
 

Using the mouse to adjust the Microwave Source frequency, measure the frequencies of 

the maxima seen in the Stripline window, making an estimate of what errors each reading 

might have.  Use the filter if necessary to achieve a clean plot.  Label your plot and fix it in 

your lab notebook.  Make calculations in tabular form with a line for each resonance (four 

in all) and with column headings, frequency, wavelength λ, N = 320 mm/λ and, by rounding 

N to the nearest half wavelength, deduce the “effective spacing” (in wavelengths) between 

the screws for each resonance.  Comment on these results. 

 

6. Report 
 

As this is a Long Experiment, you will need to write a report. General guidelines about 

report-writing are to be found in the information you received at the beginning of the year.   

An important objective of this practical is to instil good habits in the recording and 

treatment of results.  The emphasis on accuracy is not necessarily to achieve a high 

accuracy, but to make a realistic, quantitative assessment of the accuracy that can be 

achieved.  Refer to the Appendix on Estimation of Experimental Errors (attached) for 

guidance on how to assess the accuracy of the results you obtain, and how to present them 

in a consistent way. 

For this experiment, you should take care to include: 

 Summary: a brief summary of the aims of the experiment 

 Readings and results: include all the measurements asked for during the experiment. 

 Discussion: discuss the results and the accuracy you have achieved, and answer the 

questions posed in the text.   

 Conclusions: summarise your findings and achievements. 

 

 

 

 

 

Original Script – Dr P J Spreadbury 

Revisions 2006-2013 

Dr D M Holburn, December 2015 
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Experiment E4 – Appendix: Estimation of Experimental Errors 
 

It is good practice in experimental work to make an estimate of the likely error in the result 

before we actually do the experiment.  Although this may sound back-to-front, it is actually 

a very important step, as it can give us a useful insight into how much confidence we can 

have in the result, and which parts of the experiment most deserve our attention to improve 

its accuracy.  With this approach we can readily take into account: 

1. Instrumental inaccuracies.  These may be systematic (due to a faulty zero or scale constant) 

or random (due to friction or ‘noise’). 

2. Estimates made when fractional parts of scale divisions are read. 

3. Numerical rounding-off during calculations. 

The estimate is obtained by estimating the magnitudes of the individual errors associated 

with the items in the list above, and carrying these errors through the numerical processing 

of the experimental data to give the corresponding error in the result.  Below are some 

simple rules for carrying out these calculations. 

An error in some quantity x can be expressed as an absolute error  (for example, a wire of 

length 122  0.5 mm), or as a relative error r, where r = /x.  Often it is convenient to use 

percentages to represent relative errors (for example, a current of 3.25 A  1%).   

Numerical processing may involve: 

 

(a) Addition and subtraction: if two quantities x1 and x2 may be in error by as much    

as 1 and 2 then the absolute error in the sum or difference of x1 and x2 may be as 

much as (1+2) in the result.  Note that subtracting two nearly equal qualities can 

produce a large value for the relative error, (1+2)/(x1–x2), in the result.  You need 

to look out for such cases in your experimental work. 

 

(b) Multiplication and division: if two quantities x1 and x2 may be in error by as much 

as r1x1 and r2x2 then the relative error in the product or quotient of x1 and x2 may 

be as much as (r1+r2), provided r1 and r2 are small. 

 

Note that absolute errors must be used when dealing with addition and subtraction: relative 

errors must be used when dealing with products and quotients.   

It also follows that where we have to deal with expressions containing quantities raised to a 

power (e.g. x
2
), the relative error in the result, x

2
, is twice the relative error in x.  More 

generally, where x must be raised to the power P, the relative error in the result x
P
 is P times 

the relative error in x. This also holds for fractional powers, i.e. the relative error in the 

square root of x is one half the relative error in x.  

The above ideas are usually quite sufficient for laboratory experiments.  However, it may be 

argued that if x1 and x2 are independent variables, it is unlikely that the largest errors in both 

quantities will occur simultaneously.   

It can be shown that if the probable absolute errors in x1 and x2 are 1 and 2, then the 

probable absolute error in the sum or the difference of x1 and x2 is  2

2

2

1   .   

Similarly, if the probable relative errors in x1 and x2 are r1 and r2, then the probable 

relative error in the product or quotient of x1 and x2 is  2

2

2

1 rr  .   

In this experiment you are advised to use the simple approaches outlined above, and not to 

worry about these refinements. 
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Simple examples 

The following are a couple of simple examples that illustrate how to apply the ideas of the 

first section. 

(a)  The constant acceleration a of a slowly moving object is to be found by determining the 

time t taken to traverse a measured distance s . The equation of motion that applies is:  

2

2

1
ats  .  Rearranging, 

2

2

t

s
a  . 

The time is measured with a stopwatch, the distance with a metre ruler.  The measured 

values and their errors are:- 

 s = 2 ± 0.005 m.  This is 0.25 %. 

 t = 4.2 ± 0.2 s.  This is 4.8 %. 

What is the acceleration  a  and its estimated error?  

The relative errors in  a  and  t
2
  may be added to give the relative error in  a.  The relative 

error in t
2
 is twice the relative error in t. 

Hence relative error in  a  is: %8.42%25.0   = 9.8 %.   

The factor of 2 in the time term causes that term to dominate. The ¼ per cent error due to 

the distance measurement is clearly negligible compared to the 9.6% error due to the time 

measurement, so the result (the acceleration) would most sensibly be written:  

a = 0.23 ± 0.02 m s
-2

. 

(b)  An inductor is formed by winding  N1  turns of wire in the form of a cylindrical coil of 

length  l  and diameter d1.  A second circular coil with  N2  turns and of smaller diameter  d2  

is placed coaxially within the first, at its centre.  The mutual inductance between the two 

windings is to be determined from measurements on the two coils, using the formula:- 

22

1

2

2210

4 ld

dNN
M





 H 

The numbers of turns were counted and are exact.  Lengths were measured with a metre 

rule; the measured values and their errors (percentages quoted in parentheses) are:- 

 

  N1 = 200 turns (exact)    d1 = 20 ± 0.5 mm  (2.5 %) 

  N2 =  20  turns (exact)   d2 = 10 ± 0.5 mm  (5 %) 

  0 = 4  10
-7

 H m
-1

   l   = 50 ± 0.5 mm  (1 %)  

 

What is the mutual inductance  M  and its expected error? 

The relative error in the numerator due to  
2
2d  is: 2  5 = 10%.  Relative errors in 

2
1d  and  

2l  

are 5% and 2% respectively, so the absolute values are: 
2
1d = 400 ± 20 mm

2
 and: 

2l = 2500 ± 

50 mm
2
, and the value of the term inside the square root is:  2900 ± 70 mm

2
.    

 

The relative error in the denominator is: ½  70/2900, or 1.2%, and the overall relative 

error is 10% + 1.2% = 11.2 %.   It can be seen that the most serious error here arises from 

poor accuracy in measurement of d2.  The result might therefore be written: 

M = 7.3 ± 0.8  10
-6

 H 
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Stating results and plotting graphs 

In a number of places in this or other experiments, you may be asked to find the value of 

some key experimental parameter from measurements made.  When quoting the result, it is 

important to bear in mind the uncertainty or likely error in the quoted value.  For example, it 

is meaningless and misleading to quote a result to 10 significant figures (although your 

calculator may work out the figures to this precision) if the error is, say, a few per cent, 

which may be typical of experiments done in the Part IB laboratory.  In this case a result 

quoted to two or perhaps three significant figures might be appropriate; and the magnitude 

of the likely error should always be presented.  Study the examples (a) and (b) on the 

previous page for illustrations of accepted practice when presenting results. 

In some cases you may be asked to find the 

relationship of some quantity y to another quantity x.  

Plotting your results as precise points in the x, y 

plane leads to the problem of finding the ‘best’ 

straight line (or higher-order polynomial) fit to the 

points.  The method of least squares, described in the 

mathematics course, provides a solution to this 

problem. 

However, it may be more practical to include estimates of the experimental errors at the 

plotting stage by plotting your results as rectangles of height equivalent to the calculated 

error, as shown opposite.  If you can draw a straight line through at least 2/3 of the 

rectangles, then your experiment is consistent with the hypothesis that y is a linear function 

of x.  Wherever possible you should try and plot data in this way as you make the 

measurements – this approach will often warn you instantly if you make an inadvertent 

error of measurement.  It may be difficult to track down such errors once you have left the 

laboratory.   

Some programmable calculators have a built-in routine for finding the best straight-line fit 

to a set of points.  However, the hypothesis that one variable in your experiment is linearly 

dependent on another is something that should come from engineering science, not from 

the experiment itself.   

Plot the points first, to see if the relationship is a linear one.  Then use your calculator, if 

you want to, to find the numerical values of the parameters of the line. 

 

 


